Centre

🔌 APNIC

1

IPv4 Address Lifetime

Presented by Paul Wilson, APNIC

> Research activity conducted by Geoff Huston and supported by APNIC

IPv4 Address Lifetime

- Early 90's: IETF activity Routing and Addressing (ROAD) group
 - Objective: to understand the rate of allocation of IPv4 addresses, and predict the date of eventual exhaustion of the unallocated pool
 - Prediction: the pool of IPv4 addresses would be exhausted around 2008-2011
- This is a re-visiting of that activity considering latest data, including...
 - IANA and RIR delegations
 - ISP announcements to the BGP routing table

APNIC

Modeling the Process

- 1. IETF definition of IPv4
 - Data source: IETF standards (RFCs)
- 2. IANA allocations to RIRs
 - Data source: IANA IPv4 Address Registry
- **3.** RIR allocations to ISPs
 - Data source: RIR Stats files
- 4. ISP announcements
 - Data source: BGP routing table
 - Updated in latest work presented here

Asia Pacific Network Information

Centre

5

1. IETF Delegations

IPv4 Address Space

- Defined by the IETF
 - 32 bits providing 4G addresses
- The IETF has defined space for global unicast and for other purposes
- Responsibility for global unicast address space is delegated to the IANA
 - Total 220/256 blocks available (88%)
- IANA allocates space to the RIRs for further allocation and assignment

2. IANA Allocations

📎 APNIC

IANA Allocations

- IANA allocates address space to RIRs
 Progressively as required
- The IANA IPv4 address registry records the date of each /8 allocation undertaken by the IANA
- This data has some inconsistencies
 - Due to changing IANA administration and practices over many years
- However recent data is stable enough to allow projection

R

Centre Information Network Pacific Asia

IANA Allocations - Projection

- Projected date of IANA address pool exhaustion: 2020
- This projection is very uncertain due to:
 - Sensitivity of allocation rate to prevailing RIR allocation policies
 - Sensitivity to any significant uptake up of new applications that require public addresses

3. RIR Allocations

RIR Allocations

- RIRs allocate address space to LIRs (ISPs)
- RIR stats files records the date of each allocation to an LIR, together with the allocation details
- Analysis of allocations includes RIR and IANA

 \cup

Centre Network Information Pacific Asia

Total Allocations - Projection

18

0

Centre

Network Information

Pacific

Asia

Total Allocations - Projection

- Projected date of RIR address pool exhaustion: 2027
- The projection has the same levels of uncertainty as noted for the IANA projections:
 - RIR management policies
 - Technological developments

 \cup

4. BGP Routing Table

📎 APNIC

BGP Routing Table

- The BGP routing table spans a set of advertised addresses
 - Representing addresses in use by ISPs
- A similar analysis of usage and projection can be undertaken on this data
- Assumption: BGP routing table represents actual IP address usage
 Therefore it "drives" the other trends

APNI

APNIC 📎

BGP Routing Table - routeviews

Network Information Pacific sia \triangleleft APNIC

Centre

BGP Routing Table - AS1221

24

Centre

Network Information

Pacific

Asia

Network Information Pacific Asia

Centre Network Information Pacific Asia

BGP Announcements - Projection

- Projected date of address pool exhaustion according to BGP: 2026
- This projection uses a 3 year data baseline to obtain the projection
 - This is much shorter baseline than the IANA and RIR projections
 - There are, again, considerable uncertainties associated with this projection

BGP Projections - Revisited

- Comments received about this projection have prompted a more detailed analysis of the BGP data
- It appears that there is a different view that can be formed from the data
- Firstly, here's the raw data hourly measurements over 3 years...

Centre Network Information Pacific Asia

- The most obvious noise comes from flaps in /8 advertisements
- The first step was to remove this noise from the source data
 - By recalculating the address data assuming a fixed number of /8 advertisements
 - The value of 19 was used to select one of the 'tracks' in the data
- Next use gradient limiting and sliding average to smooth the data

2

- Its now possible to apply a best fit function to the data.
- A linear model appears to be the most appropriate fit:...

- Is linear fit appropriate?
- First order differential of total BGP announcement
 - Until 2000, exponential (accelerating) growth
 - Since 2000, oscillating differential and overall deceleration
 - Last 6 months, differential approaching 0 (i.e. no growth)
- Linear fit seems most appropriate for this data

Centre

daily rate of change in address growth per month

Combining the Data

📎 APNIC

Centre Network Information Pacific Asia

Centre Network Information Pacific Asia

Holding Pools

Holding Pools

- Within IPv4 management system, some allocated address space is not used
 - Historically, substantial IANA-allocated space is still unannounced (not routed)
 - Under RIR system, RIRs hold pools of addresses for further allocation
 - Address space allocated by RIRs takes some time (small) to be announced
- These holding pools can be incorporated into the address space consumption model

Holding Pools: projection

- Assume that the RIR efficiency in allocation slowly declines, with address holdings
 - RIR holding pool will slowly increase over time
- Assume that the Unannounced space behaves predictably

Shrinks at the same rate as over past 3 years

 \cup

Modeling the Process

📎 APNIC

Modeling the Process

- Put together all the data
 - IANA projections
 - RIR projections
 - BGP projections
 - Holding pool analysis
- Assume exponential best fit model for address space projections
- Also look at linear projections as indicated by the routing table analysis

Centre Network Information Pacific Asia

Centre Network Information Pacific Asia

Process model - linear

Pacific Asia

Centre

Methodology and Caveats

- Projection of based on 2000-2003 data
 - IANA and RIR allocation practices
 - BGP-based demand model
- Incorporating
 - RIR unallocated pool
 - Total address space including allocated but unannounced
- Exponential growth model
 - Address space lasts until 2022
 - or 2029 if all unannounced space recovered
- Linear growth model
 - Address space lasts until 2037 (or 2047)

Some Big Issues

- This is just a model reality will be different!
- Will the BGP routing table continue to reflect allocation rates?
- Is the model of the unannounced pools and RIR holding pools appropriate?
- Externalities...
 - What are the underlying growth drivers (applications and services) and how are these best modeled?
 - What forms of disruptive events would alter this model, and to what extent?
- Should address management policies change as a result of these results?

Centre

Network Information

Pacific

Asia

Thank you

gih@telstra.net http://www.potaroo.net