PacINET 2011

The state of IP address distribution and its impact

Elly Tawhai Senior Internet Resource Analyst/Liaison Officer, Pacific, APNIC

About APNIC

- What we do
 - "Regional Internet Registry"
- Why we do it
 - Needed technical/administrative service
 - Support development of the Internet as a single, seamless, routable, global network
- How we do it
 - Non-profit mutual organization
 - Bottom-up policy process

Overview

- IP address distribution in the AP region
- Status of IPv4 exhaustion
- Observations of W6D day
- Way forward

APNIC IP Address Distribution 2008 - 2010

IP address delegation count

APNIC IP Address Distribution 2008 - 2010

IP address delegation size

What Services Do These IP Addresses Go To?

2010 service percentage by sub-region

What Do the Stats Say?

- The Internet in the Asia Pacific region is growing at an accelerated rate, particularly in <u>access</u> <u>networks</u>
- APNIC IPv4 requests continue because of network growth to meet the population demand while IPv6 is being deployed
- IPv6 is being deployed globally!

Registry Update

- IPv4 exhaustion
 - Now in stage 3, as of 15 April 2011

 IANA handed out APNIC's last /8 block, 103/8, on 3 February 2011

Policy Changes

- IPv4 policy during Stage 3
 - To extend the life of APNIC's last /8, each organization can only receive a limited size from it
 - Limited to a single maximum delegation of /22
 - Minimum delegation size is a /24
 - Implemented May 2011

Resource Services

- 2010 IPv6 delegations more than tripled
 - 650 delegations in 2010
 - Strong response to "Kickstart IPv6" with over 402 new applications
 - Members with existing IPv4 allocations or assignments may instantly qualify for an IPv6 block

Kickstart your IPv6 network! Click here to find out how to get your IPv6 block

What we observed on the W6D day

- 8th June 2011, World IPv6 Day
 - Labs.apnic.net
- Adding IPv6 to your website may have risks
 - Will your clients still be able to 'see' you?
 - What % of clients will experience issues?
- Finding out in advance what to expect is useful
 - Way to measure end-user behaviour
 - Without affecting your own website investment
- Measuring failure is hard
 - Website logs only measure successful connections

Adding IPv6

- Older Windows XP hosts experience problems with dual stack (IPv4, IPv6) DNS records
 - May refuse to connect to the IPv4 address
- Some hosts cannot process IPv6 DNS properly
 - Not supported in all DHCP backed configurations?
- 'Partial IPv6' problems
 - Locally IPv6 enabled, no IPv6 routes to global Internet
- Loss of eyeballs = loss of revenue?
 - When your core business presents via the web, what risks to loss of web access are you willing to take?

IPv6: "can" vs "could" vs "will"

http://www.nanog.org/meetings/nanog52/presentations/Tuesday/huston-2011-06-15-dualstack.pdf

IPv6: "can" vs "could" vs "will"

✓ About 0.4% of the Internet's clients can and will use IPv6 in a dual stack scenario And these clients are generally using a "native" IPv6 service

20

n

IPv6: "can" vs "could" vs "will"

29/01 12/02 26/02 12/03 26/03 09/04 23/04 07/05 21/05 04/06 18/06

Date

IPv6: "can" vs "could" vs "will"

-Only Literal URL

RL Type (***) ✓ Around 35% of the Internet's clients are equipped with IPv6 capability that can be exposed And the additional clients are using Teredo auto-tunneling

Performance observations IPv6 load time by IPv6 type

Performance observations

Performance observations

20 (::)(:) ()(::)(::)

IPv6 connection failure

- Some 2% 5% of IPv6 unicast connections fail
 - This is better than IPv6 auto-tunnels, but is still 20x the rate of IPv4 connection failure
- Some 12% 20% of 6to4 connections fail!
 - This is a very high failure rate
 - The failure is most likely a protocol 41 filter close to the client that prevents incoming 6to4 packets reaching the client
- Some 35% of Teredo connections fail!
 - This is an amazingly high failure rate!

For online services

- So what will be the best IPv6 transition mechanism at the moment for an online services?
 - Dual Stack with IPv6 native service is a viable option in today's environment
 - ISPs with the CGN option is not your friend
 - Go with native IPv6!
- But...
 - A small fraction of existing clients will experience a much slower service or connection failure
- End-host auto-tunneling is not a solution
 - ISPs need to provide IPv6 native service

Labs.apnic.net – Measurement outcome

- Dual-stack brokenness:
 - Decreasing
 - Older host software systems upgraded with regular vendor updates
 - In worst case fewer than 3 in 10,000 clients will experience any problem with fetching from a dualstack website

Way forward

- World IPv6 Day was not about absolute volume
 - No one expected it to suddenly bring 10% of the Internet traffic in IPv6
 - World IPv6 Day managed not to break the Internet
 - Doubled visibility IPv6 activities
- Time has come to move on making it a permanent change
 - Working on doubling the doubling = exponential growth of IPv6 traffic

Thank You

elly@apnic.net

