APNIC

IPv4 & IPv6 address allocation - What are all those numbers about?

"IPv6 for e-business" Australia, March, 2007

Nurani Nimpuno APNIC

What is APNIC?

 Regional Internet Registry (RIR) for the Asia Pacific Region

- Regional authority for Internet Resource distribution
- IP addresses (IPv4 and IPv6), AS numbers, inaddr.arpa delegation
- Membership-based organisation
 - Established 1993
 - Non-profit, neutral and impartial

<u>Not</u> operations forum <u>Not</u> standards development

Services provided by APNIC

- Internet resource distribution & registration
 - IP addresses (IPv4, IPv6), AS numbers, reverse DNS delegations
 - whois.apnic.net
- Training and education
 - IRME, DNS, Routing and IPv6 workshops, Spam & Security tutorials
 - Subsidised for members
- Regional networking
 - Participation and representation
 - IETF, ITU, APT, PITA, APEC, SANOG, ISOC, etc.

- Information dissemination
 - APNIC Meetings
 - Publications
 - Web and ftp site
 - Newsletters, global resource reports
 - Mailing lists (Open for all)
- Policy coordination
 - APNIC Open Policy Meetings
 - 2 per year
- Critical infrastructure services
 - Working with root operators (F, I, J, K, M)

Q

IP addressing

APNIC

5

What is an IP address?

- Internet identifier including information about how to reach a location
 - (via the Internet routing system)
 - IP = Internet Protocol
 - (A Protocol is "an agreed upon convention for communication")
- Public infrastructure addresses
 - Every device must have an IP address
 - Every globally-reachable address is unique

IPv4 and IPv6 addresses

IPv4

• 32-bit* number (2³²)

Addresses available: ~4 billion Example:

202.12.29.142

<u>IPv6</u>

4 fields

8 bits (256 combinations)

• 128-bit* number (2¹²⁸)

Addresses available: 340 billion billion billion billion <u>Example:</u>

FE38:DCE3:124C:C1A2:BA03:6735:EF1C:683D 8 fields 16 bits (65 536 combinations) * bit = binary digit

Internet address routing

* 🖉 APNIC

What is a domain name?

- Easy to remember (well, sort of) name for a computer or service
 - -e.g. apnic.net, www.undp.org, www.ipv6.org.au
- Hierarchical structure providing distributed administration
- Not a proper (or useful!) directory service, but a basic mapping service
 - -Technical feat is in distribution and scaling

Ø

Querying the DNS – It's all about IP! Root .tv 198.41.0.4 www.ipv6.org.au .org .au .net com 31.181.2.61 "Ask 128.250.1.21 wywkipy6.0092304' "Aakvarapse.243.148" org.au 128.250.1.21 **GōM**Q*`A*Ii}}**VB:07:**[24]:// ipv6.org.au www.ip#8.t8rg.au 212.154.242.148 local APNIC 🖉 dns 210.80.58.34 www.ipv6.org.au 210.84.80.24 212.154.242.144

Where do IP addresses come from?

APNIC

17

What else is an IP address?

- IP addresses are...
 - Internet infrastructure addresses
 - a finite Common Resource
 - not "owned" by address users
 - not dependent upon the DNS
- IP does not mean "Intellectual Property"

Internet address management

Resource allocation and assignment

Allocation and Assignment

Downstream Assigns to end-user

Customer / End User

APNIC 🖉

Policy development

- Industry self-regulatory process
 - Policy is developed by the AP Internet community to suit needs of region
- Decisions made based on consensus

 <u>http://www.apnic.net/docs/policy/dev/</u>
- Public meetings
 - -<u>http://www.apnic.net/meetings/</u>
- Mailing lists
 - -<u>http://www.apnic.net/community/lists/</u>

P

Address management objectives Limit routing table growth Efficient use of resources Support provider-based routing **Based** on Conservation Aggregation demonstrated need Registration APNIC Ensure uniqueness Facilitates troubleshooting

Pacific Network Information Centre

Asia

24

Growth of global routing table

Global IPv4 delegations

IPv4 Exhaustion

So, are we running out?

Studies in IPv4 exhaustion

- All RIRs make their allocation publicly available <u>http://www.nro.net/statistics/</u>
- Geoff Huston, chief scientist at APNIC, has studied the IPv4 allocation data
 - Projections based on current and past utilisation rates
 - Three sets of data analysed:
 - IANA allocations to RIRs (IANA IPv4 address registry)
 - Allocation of /8 blocks to RIRs and others
 - RIR allocations to ISPs (RIR statistics files)
 - Allocation of blocks to LIRs
 - ISP announcements (BGP routing table)
 - Amount of address space advertised

Data analysed - IPv4 allocations

http://www.potaroo.net/tools/ipv4/

30

R

Data analysed - complete picture

32

Projection - including all unused pools

*If all IPv4 addresses not in use would be reclaimed and re-allocated

33

R

Projection - RIR exhaustion point

As of 5 March 2007

When will we 'exhaust" IPv4?

- A. When will we stop routing IPv4 in our networks?
 - We will probably still route IPv4 for some decades to come
- B. When will the RIRs have no more IPv4 addresses to distribute?
 - Sometime between 2010 and 2013
- C. When will IANA have no more IPv4 addresses to pass to the RIRs
 - Sometime between 2009 and 2012

IPv4 exhaustion - conclusions

- We are **not** running out of IP addresses now
 - Projections gives us a few more years
 - No need for Denial, Panic, Anger, Blame shifting, Bargaining...
 - Impossible to predict future
 - Policies change
 - New technologies can emerge
 - Market behaviour can change
- IPv6
 - RIRs support the deployment of IPv6
 - IPv6 is available and ready
 - Transition will take time
 - Necessary to start now!

IPv6 address architecture

Rationale – why IPv6 was developed?

- Address depletion concerns
 - Squeeze on available addresses space
 - Probably will never run out, but will be harder to obtain
 - End to end connectivity no longer visible
 - Widespread use of NAT
 - IPv6 provides much larger
 IP address space than IPv4

- Increase of backbone routing table size
 - Current backbone routing table size > 230K
 - CIDR does not guarantee efficient and scalable hierarchy
 - Routing aggregation is still a concern in IPv6
 - IPv6 address architecture is more hierarchical than IPv4

39

IPv6 addressing

- 128 bits of address space (2¹²⁸)
 - Addresses available: 340 billion billion billion billion
- Hexadecimal values of eight 16 bit fields
 - X:X:X:X:X:X:X:X (X=16 bit number, ex: A2FE)
 - 16 bit number is converted to a 4 digit hexadecimal number
- Example:
 - FE38:DCE3:124C:C1A2:BA03:6735:EF1C:683D
 - Abbreviated form of address
 - 4EED:0023:0000:0000:0000:036E:1250:2B00
 - →4EED:23:0:0:0:36E:1250:2B00
 - →4EED:23::36E:1250:2B00
 - (Null value can be used only once)

41

Address management objectives Pacific Network Information Centre **IPv** Limit routing table growth Efficient use of resources Avoid wasteful **Hierarchical** distribution practices Efficient Aggregation usage Asia **Minimise** Registration overhead APNIC **Ensure uniqueness** Ease of access to resources Facilitates troubleshooting

42

IPv6 initial allocation

- Initial allocation size is /32
 - End site assignments /64 /48
 - (size is up to ISP)
- Initial allocation criteria
 - 'Plan' to connect 200 end sites within 2 years
 - -Not be an end-site

http://www.apnic.net/services/ipv6 guide.html

IPv6 portable assignment for multihoming

- New policy to allow IPv6 portable assignment to end-sites
 - Direct assignment to end site
 - Allows end user organisations to get an independent assignment
 - Size: /48, or a shorter prefix if the end site can justify it
 - To be multihomed within 3 months
 - To be implemented 9 March 2007

http://www.apnic.net/docs/policy/ipv6-address-policy.html

IPv6 deployment - Asia

<u>China</u>

- China Next Generation Internet (CNGI) project
- National initiative 2002
- CNGI Backbone 3040 giga POPs, 300 campus networks & international links

<u>Japan</u>

IPv6 in actual business services
IPv6 connections to residential users via tunneling (NTT Communications)

http://www.ocn.ne.jp/ipv6
Multi channels, video-on-demand (Plala & Online TV)

<u>Korea</u>

- National initiative: U-biquitous Society
 IPv6 included in strategy for the development of IT and telecommunication industries
- 2006 target: Commercialisation of IPv6 applications & content

IPv6 deployment - Europe

<u>Europe</u>

- EU government initiative to promote IPv6 R&D
 - http://europa.eu.int/information society/policy/nextweb/ipv6/index en.htm
- Information Society Technologies (IST) IPv6 cluster
 - <u>www.ist-ipv6.org</u>
- Nokia: IPv4/IPv6 Dual Stack CDMA mobiles
 - http://www.nokia.com/A402958

IPv6 deployment - USA

<u>USA</u>

• Jun 2008:

- All agencies infrastructure to be using IPv6
- All new IT purchases must be IPv6 compatible
- Department of Defence (DoD)
 - Plan to transition to IPv6 since Oct 2003

47

IPv6 Allocations in Asia Pacific 1999

IPv6 Allocations in Asia Pacific 2000 (cumulative total)

49

IPv6 Allocations in Asia Pacific 2001 (cumulative total)

50

IPv6 Allocations in Asia Pacific 2002 (cumulative total)

51

IPv6 Allocations in Asia Pacific 2003 (cumulative total)

52

APNIC S

IPv6 Allocations in Asia Pacific 2004 (cumulative total)

53

IPv6 Allocations in Asia Pacific 2005 (cumulative total)

54

IPv6 Allocations in Asia Pacific 2006 (cumulative total)

55

APNIC S

IPv6 - Internet for everything!

R

56

Thank you

nurani at apnic dot net www.apnic.net

Material available at: <u>http://www.apnic.net/community/presentations/other.html</u>