An Operational Perspective on Routing Security

Geoff Huston
Chief Scientist, APNIC
November 2006
On the Internet...
there are many ways to be bad!

- Enlist a Bot army and mount multi-gigabit DOS attacks
 - Extortion leverage
- Port Scan for known exploits
 - General annoyance
- Spew spam
 - Yes, there are still gullible folk out there!
- Mount a fake web site attack
 - And lure victims
- Mount a routing attack
 - And bring down an entire region / country / global network!
If I were bad (and greedy)...

I’d attack routing

- Through routing I’d attack the DNS
- Through the DNS I’d lure traffic through an interceptor web server
- And be able to quietly collect user details

Welcome to today’s online fraud industry
If I were **really** bad (and evil)...

- I’d attack the routing system
- Through routing I’d attack:
 - the route registry server system
 - the DNS root system
 - trust anchors for TLS and browser certificates
 - isolate critical public servers and resources
 - overwhelm the routing system with spurious information
 - generate a massive routing overload situation to bring down entire regional routing domains
- And bring the network to a complete chaotic halt
What’s the base problem here?

- Routing is built on sloppy mutual trust models
- Routing auditing is a low value activity that no one performs with any level of thoroughness
- We have grown used to lousy solutions and institutionalized lying in the routing system
- It’s a tragedy of the commons situation:
 - Nobody can single-handedly apply rigorous tests on the routing system
 - And the lowest common denominator approach is to apply no integrity tests at all
 - All trust and no defence
So we need routing security

like we need motherhood, clean air and clean water

- But what does this “need” mean beyond various mantras, noble intentions and vague generalities about public safety and benefit?
 - Who wants to pay for decent security?
 - What’s the business drivers for effective security?
 - How do you avoid diversions into security pantomimes and functionless veneers?
- Can you make decent security and also support “better, faster and cheaper” networked services?
Risk Management

- Adding operational security measures is not about being able to create and maintain absolute security. It's about a pragmatic approach to risk mitigation, using a trade-off between cost, complexity, flexibility and outcomes.

- It's about making an informed and reasoned judgment to spend a certain amount of resources in order to achieve an acceptable risk outcome.
Threat Model

Understanding routing threats:

- What might happen?
- What are the likely consequences?
- What’s my liability here?
- How can the consequences be mitigated?
- What’s the set of cost tradeoffs?
- Does the threat and its consequences justify the cost of implementing a specific security response?
Threat Response

- Collective vs unilateral responses to security threats
 - Should I trust noone else and solve this myself?
 - How much duplication of effort is entailed?
 - Is the threat a shared assessment?
 - Can we pool our resources and work together on a common threat model?
 - What tools do we need?
 - Are there beneficial externalities that are also generated?
 - Who wants to work with me?
 - What’s the framework for collective action?

When will you stop asking all these bloody annoying questions and just tell me what to do!
Routing Security

Protecting **routing protocols** and their operation

- Threat model:
 - Compromise the topology discovery / reachability operation of the routing protocol
 - Disrupt the operation of the routing protocol

Protecting the **protocol payload**

- Threat model:
 - Insert corrupted address information into your network’s routing tables
 - Insert corrupt reachability information into your network’s forwarding tables
Threats

- Corrupting the routers’ forwarding tables can result in:
 - Misdirecting traffic (subversion, denial of service, third party inspection, passing off)
 - Dropping traffic (denial of service, compound attacks)
 - Adding false addresses into the routing system (support compound attacks)
 - Isolating or removing the router from the network
Operational Security Measures

- Security considerations in:
 - Network Design
 - Device Management
 - Configuration Management
 - Routing Protocol deployment

- Issues:
 - Mitigate potential for service disruption
 - Deny external attempts to corrupt routing behaviour and corrupt routing payload
The routing model

IGP
- used to manage interior topology
- IGP payload is interior interface and loopback addresses

BGP
- Used to manage external routes
- Implements local routing policies
Basic Network design

Isolate your network at the edge:
- Route all traffic at the edge
- NO sharing LANs
- NO shared IGPs
- NO infrastructure tunnels

Isolate your customers from each other:
- NO shared access LANs

Isolate routing roles within the network:
- Exterior-facing interface routers
- Internal core routers
Configuration Tasks - Access

- Protecting routing configuration access
 - ssh access to the routers
 - filter lists
 - user account management
 - access log maintenance
 - snmp read / write access control lists
 - protect configurations
 - monitor configuration changes

- Protecting configuration control of routers is an essential part of network security
Configuration Tasks – IGP

- Protecting the IGP
 - No shared IGP configurations
 - Don’t permit third party managed equipment to participate in IGP routing
 - No IGP across shared LANs!
 - shared LANs represent a point of vulnerability
Configuration Tasks - BGP

- Protecting BGP
 - Protect the TCP session from intrusion
 - Minimize the impact of session disruption on BGP.
 - Reduce third party dependencies to a minimum (use local nexthop targets, for example)
 - Monitor and check all the time
Configuration Tasks - BGP

Basic BGP configuration tasks:
- No redistribution from iBGP into the IGP
- Use session passwords and MD5 checksums to protect all BGP sessions
- For iBGP use the local loopback address as the next hop (next-hop-self)
- Use filter lists to protect TCP port 179
- Use maximum prefix limiting (hold mode rather than session kill mode preferred)
- Use eBGP multi-hop with care (and consider using TTL hack)
- Align route reflectors with topology to avoid iBGP traffic floods

Operating BGP:
- Use soft clear to prevent complete route withdrawals
- Use BGP session state and BGP update monitors and generate alarms on session instability and update floods
Configuration Tasks – BGP

- Check your router config with a current best practice configuration template
 - Rob Thomas’ template at http://www.cymru.com/Documents/secure-bgp-template.html is a good starting point

- Remember to regularly check the source for updates if you really want to using a static bogon list
Protecting the Payload

- How to increase your confidence in determining that what routes you learn from your eBGP peers is authentic and accurate
- How to ensure that what you advertise to your eBGP peers is authentic and accurate
Customer Routes

- Authenticate customer routing requests:
 - Check validity of the address
 - Own space – validate request against local route object registry
 - Other space – validate request against RIR route object database registered POC
 - This is often harder than it originally looks!
 - Adjust explicit neighbor eBGP route filters to accept route advertisements for the prefix
 - Apply damping filters
SKA Peer Routes

- Higher level of mutual trust
- Accept peer routes - apply local policy preferences
- Filter outbound route advertisements according to local policy settings
- Use max prefix with “discard-over-limit” action (if available)
Upstream Routes

- One-way trust relationship
- Apply basic route filters to incoming route advertisements
 - RFC 1918 routes
 - own routes (?)
Even so...
After all this effort, its not all that good is it?
The Current State of Routing Security

Is pretty bad:

- This is a commodity industry that is not really coping with today’s level of abuse and attack
 - Incomplete understanding
 - Inadequate resources and tools
 - Inadequate information
 - Inadequate expertise and experience

Can we do better?
Routing Security

- The basic routing payload security questions that need to be answered are:
 - **Who** injected this address prefix into the network?
 - Did they have the necessary **credentials** to inject this address prefix? Is this a valid address prefix?
 - Is the forwarding path to reach this address prefix **trustable**?

- What we have today is a relatively fuzzy insecure system that is vulnerable to various forms of disruption and subversion
 - While the protocols can be reasonably well protected, the management of the routing payload cannot reliably answer these questions
What I (personally) really want to see...

- The use of authenticatable attestations to allow automated validation of:
 - the authenticity of the route object being advertised
 - authenticity of the origin AS
 - the binding of the origin AS to the route object

- Such attestations used to provide a cost effective method of validating routing requests
 - as compared to the today’s state of the art based on techniques of vague trust and random whois data mining
And what would be even better to see...

- Such attestations to be carried in BGP as protected payload attributes

- Attestation validation to be a part of the BGP route acceptance / readvertisement process as a strong local selection preference
What would also be good...

- A mechanism to check the validity of a received AS path:
 - Does the path represent a viable forwarding path through the network to reach the destination?
 - Has the Update Message itself traversed every element in the path?
And what (I think) should be retained...

- BGP as a “block box” policy routing protocol
 - Many operators don’t want to be forced to publish their route acceptance and redistribution policies.

- BGP as a “near real time” protocol
 - Any additional overheads of certificate validation should not impose significant delays in route acceptance and re-advertisement
Protecting the BGP payload

- How to increase your confidence in determining that what routes you learn from your eBGP peers is authentic and accurate

- How to ensure that what you advertise to your eBGP peers is authentic and accurate
Status of Routing Security

- We are nowhere near where we need to be
- We need more than “good routing housekeeping”
- We are in need of the adoption of basic security functions into the Internet’s routing domain
 - Injection of reliable trustable data
 - Address and AS certificate injection into BGP
 - Use a PKI for address “right-of-use”
 - Explicit verifiable trust mechanisms for data distribution
 - Adoption of some form of certification mechanism to support validated routing protocol information distribution
Status of Routing Security

- It would be good to adopt some basic security functions into the Internet’s routing domain
 - Certification of Number Resources
 - Is the current controller of the resource verifiable?
 - Explicit verifiable trust mechanisms for data distribution
 - Signed routing requests
 - Adoption of some form of certificate repository structure to support validation of signed routing requests
 - Have they authorized the advertisement of this resource?
 - Is the origination of this resource advertisement verifiable?
 - Injection of reliable trustable data into the protocol
 - Address and AS certificate / authorization injection into BGP
Current Activities

- Some interest in this activity from a variety of public and private sector players (and still a lot of the typical security scepticism)

- Take previous work on various forms of secure BGP protocols (sBGP, soBGP, pgBGP, DNSRRs) and attempt to develop a common architecture for securing the Internet’s routing system

- IETF Working Group on Securing Inter-Domain Routing active in standardizing elements of a secure routing framework

- APNIC activity on defining a PKI for Internet Number resources as a trust injection model
Current Steps in Securing Routing

- PKI infrastructure support for IP addresses and AS numbers
- Certificate Repository infrastructure
- Operational tools for near-line validation of signed routing requests / signed routing filter requests / signed entries in route registries
- Defining the validation elements of a routing system
- Carrying validation information as part of BGP Update attribute
Security only works if:

we make a secure mechanism cheaper and more efficient than existing practices

- Security as an added cost product feature has been a commercial failure in the Internet
- We need to understand how to deploy secure mechanisms that can reduce operational costs and bolt security features into the basic fabric of the Internet
Thank You

Questions?