

IPv4 Address Lifetime

Presented by Paul Wilson, APNIC

> Research activity conducted by Geoff Huston and supported by APNIC

IPv4 Address Lifetime Expectancy

- IETF activity within the Routing and Addressing (ROAD) group in the early 1990's
 - The objective was to understand the rate of allocation of IPv4 addresses and predict the date of eventual exhaustion of the unallocated pool
 - At the time the prediction was that the pool of IPv4 addresses would be exhausted around 2008-2011
- This is a re-visiting of this activity considering latest data
 - IETF, IANA and RIR delegations
 - Also, ISP announcements to the BGP routing table

APNIC

Modeling the Process

1. IETF definition of IPv4

- Source: IETF standards (RFCs)
 - Delegation of address space for IANA administration

2. IANA allocations to RIRs

- Source: IANA IPv4 Address Registry
 - Allocation of /8 blocks to RIRs and others

3. RIR allocations to ISPs

- Source: RIR Stats files
 - Allocation of blocks to LIRs
- 4. ISP announcements
 - Source: BGP routing table
 - Amount of address space advertised

Modeling the Process

APNIC Asic

1. IETF Delegations

IPv4 Address Space

- Defined by the IETF
 <u>– 32 bits providing 4B addresses</u>
- The IETF has defined space for global unicast (administered by the IANA) and for other purposes
- IANA allocates space to the RIRs for further allocation and assignment

IPv4 Address Space

2. IANA Allocations

APNIC SINIC

IANA Allocations

- IANA allocates address space to RIRs
- The IANA IPv4 address registry records the date of each /8 allocation undertaken by the IANA
- This data has some inconsistencies
 - Changing IANA administration and practices over many years
- However data is stable enough to allow some form of projection

IANA Allocations - Historical

Centre

IANA Allocated IPv4 /8 Address Blocks

IANA Allocations - Projection

- Projected date of IANA address pool exhaustion: 2020
- This projection is very uncertain because of:
 - Sensitivity of allocation rate to prevailing RIR assignment policies
 - Sensitivity to any significant uptake up of new applications that require end-to-end IPv4 addressing vs use of NATs

3. RIR Allocations

APNIC S

APNIC

RIR Allocations

- RIRs allocate address space to LIRs (ISPs)
- RIR stats files records the date of each allocation to an LIR, together with the allocation details

RIR Allocations - Current

Address Allocation Status - by /8

RIR Allocations - Historical

RIR Assigned IPv4 /8 Address Blocks

RIR Allocations - Projection

RIR Assigned IPv4 /8 Address Blocks - Projection

RIR Allocations - Projection

- Projected date of RIR address pool exhaustion: 2027
- The projection has the same levels of uncertainty as noted for the IANA projections:
 - RIR management policies
 - Technological developments

APNIC

4. BGP Routing Table

APNIC STANIC

BGP Routing Table

- The BGP routing table spans a set of advertised addresses
 - Representing addresses in use by ISPs
- A similar analysis of usage and projection can be undertaken on this data
- Assumption: BGP routing table represents actual IP address usage – Therefore it "drives" the other trends

APNIC

BGP Announcements - Current

Address Allocation Status - by /8

BGP Routing Table - routeviews

Asia Pacific Network Information Centre

APNIC

BGP Routing Table - AS1221

BGP Announcements - Projection

BGP Announced Address Space - Projection

BGP Announcements - Projection

- Projected date of address pool exhaustion according to BGP: 2027
- This projection uses a 3 year data baseline to obtain the projection
 - This is much shorter baseline than the IANA and RIR projections
 - There are, again, considerable uncertainties associated with this projection

APNIC

BGP Announcements - Projection

- Comments received about this projection have prompted a more detailed analysis of the BGP data
- It appears that there is a different view that can be formed from the data
- Firstly, here's the raw data hourly measurements over 3 years...

APNIC

- The most obvious noise comes from flaps in /8 advertisements.
- The first step was to remove this noise by recalculating the address data using a fixed number of /8 advertisements
- The value of 19 was used to select one of the 'tracks' in the data

- This is still noisy, but there is no systematic method of raw data grooming that can efficiently reduce this noise
- Now use gradient smoothing, limiting the absolute values of the first order differential of the data (gradient limiting) to smooth the data

- Now, further smoothing is needed to reduce the data set to allow projection models to be generated
- The technique used is a sliding window average, with a window of 1501 entries

APNIC

- Its now possible to apply a best fit function to the data.
- A linear model appears to be the most appropriate fit:...

- First order differential of total BGP announcement
 - Until 2000, exponential (accelerating) growth
 - Since 2000, oscillating differential and overall deceleration
 - Last 6 months, differential approaching 0 (i.e. no growth)
- Linear fit seems most appropriate for this data

APNIC

daily rate of change in address growth per month

Combining the Data

APNIC SINIC

Recent Data

IPv4 Address Space

Holding Pools

APNIC SAPNIC

Age of Unannounced Blocks

Age Distribution of Unannounced Address Space (/8s)

Age of Unannounced Blocks

Centre

Cumulative Age Distribution of Unannounced Address Space (/8s)

Centre Pacific Network Information Asia APNIC

2

Modeling the Process

- Assume that the RIR efficiency in allocation slowly declines, so that the amount of RIRheld space increases over time
- Assume that the Unannounced space shrinks at the same rate as shown over the past 3 years
- Assume an exponential best fit model to the announced address space projections and base RIR and IANA pools from the announced address space projections, using the above 2 assumptions

Observations

- Extrapolation of current allocation practices and BGP-based demand model
- Derived from 2000-2003 data
- Considering
 - IANA/RIR unallocated pool
 - Total address space including allocated but unannounced
- Assuming exponential growth
 - Address space lasts until 2025, or up to 2029
- Assuming linear growth
 - Address space lasts until 2037 2047

Issues

- This is just a model reality will be different!
- Will the BGP routing table continue to reflect allocation rates?
- Is the model of the unadvertised pools and RIR holding pools appropriate?
- Externalities...
 - What are the underlying growth drivers (applications) and how are these best modeled?
 - What forms of disruptive events would alter this model, and to what extent?

Questions?

gih@telstra.net http://www.potaroo.net

APNIC

2