Background

draft-ietf-multi6-architecture-04.txt

(RFC publication queue)

- general description of multi-homing objectives
- consideration of major types of approaches
- consideration of various types of identity choices and their implications
- generic functional decomposition
General Questions

- How is a session/equivalence state established?
 - Upper/lower level split
 - Initial packet exchange
 - Capability negotiation

- Re-Homing Triggers
 - Per session?
 - Per host?

- Definition of Identity Equivalence State

- Locator Selections

- Session/equivalence state removal
SHIM6 Architecture

draft-ietf-shim6-arch-00.txt

Initial draft – incomplete

- Endpoint Identity considerations
- Functional decomposition

- To Add (?)
 - Equivalence State definition
 - Design Trade-offs
SHIM6 ID / LOC Split - Basic Approach

Sender A

src = ULID(A)
dst = ULID(B)

SHIM MAPPING

src = Loc(A)
dst = Loc(B)

Receiver B

Identity

src = ULID(A)
dst = ULID(B)

SHIM MAPPING

Locator

src = Loc(A)
dst = Loc(B)
Where is the SHIM?

Transport Protocols

TCP UDP DCCP ...

IP Endpoint Sublayer

AH ESP Frag/Reassembly Destination Options

Multi6 SHIM

IP Routing
What’s a “ULID”?

- **Upper Layer IDentifier**
 - A selection from the set of locators associated with an endpoint
 - It’s (probably) a viable locator
 - It’s drawn from a structured space (reverse mappable)
 - It’s better if it were a unique (deterministic) selection for each host *(to be clarified)*
 - It’s useable in a referral context within and between hosts
 - It’s semi-persistent
Turning on SHIM6

- The initial SHIM6 state for a ULID pair is the null mapping function
 (no shim mapping and no locator equivalence set)

- Subsequent capability negotiation to determine host-paired SHIM6 capability

- Exchange of current Locator Sets

- SHIM mapping installed on each endpoint at the IP layer
 - ULID pair to current Locator pair
Maintaining State

- Detecting network failure

 (How does a host know that its time to use a different source and/or destination locator?)

 (More work needed here)

- Single per-endpoint state vs per session state
- Heartbeat within the session
- Shim heartbeat
- Modified transport protocol to trigger locator change
- Host / Router interaction to trigger locator change
- Application timeframe vs network timeframe
- Failure during session startup and failure following session establishment
Maintaining State

Locator Failure Triggers

- Possible triggers include failure of upper level keepalive signal to the SHIM layer, explicit trigger from upper level, ICMP error, explicit SHIM level reachability failure
 - Any or defined subset?
- Re-Homing may involve exhaustive pair exploration to establish a new viable locator pair
 - Reactive or Continuous Probe?
- Signal upper level protocol of path state change
 - “Active” end state change procedure
 - “Passive” end state change procedure
Removing State

- No explicit upper level protocol trigger
 - Use state timeout to remove stale SHIM mapping information

(The entire area of vertical signalling in the host protocol stack requires further consideration)
Some Open Issues

- Integration of use of HBAs and CGAs with SHIM6
 - In particular dynamic vs static locator set management

- SHIM6 capability negotiation and locator set exchange
 - Protocol analysis required

- Explicit packet signals for triggering SHIM mapping on incoming packets
 - How should you tell an incoming SHIM packet vs a non-SHIM packet?

- Interaction with site exit routers
 - Not defined as yet
Open Issues (2)

- ULID selection
 - How deterministic should this be?

- DNS interaction

- Adds and Wdls from locator pool

- Per-transport locator failure triggers
 - i.e. per transport vs per ULID pair SHIM state?
Common Issues

- Network layer protocol element
 - How do you know a session is completed?
 - The concept of session establishment and teardown is a transport concept, not an IP level concept
 - What do you need to do to bootstrap?
 - Are there ‘distinguished’ locators that you always need to use to get a session up?
Common Issues

- **Session Persistence**
 - Use one locator as the “home” locator and encapsulate the packet with alternative locators
 - Set up the session with a set of locators and have transport protocol maintain the session across the locator set
 - Optionally delay the locator binding, or allow the peer dynamic change of the locator pool
 - Use a new peering based on an identity protocol element and allow locators to be associated with the session identity
Common Issues

- Identity / Locator Binding domain
 (Equivalence Set)
 - Is the binding maintained per session?
 - In which case multiple sessions with the same endpoints need to maintain parallel bindings
 - Is the binding shared across sessions?
 - In which case how do you know when to discard a binding set?
Common Issues

- Bilateral peer applications vs multi-party applications
 - What changes for 3 or more parties to a protocol exchange?
- Application hand-over and referral
 - How does the remote party identify the multi-homed party for third party referrals?
Next Steps

- Review SHIM6 contributions
- Solicit explicit answers to open issues from document editors
- Submit -01 draft for WG Review