IPv6 Elite Panel

Addressing the IPv6 Internet

Paul Wilson APNIC

📎 APNIC

Internet address management

- APNIC is the Regional Internet Registry (RIR) for the Asia Pacific Region
 - Regional authority for Internet Resource distribution
 - IP addresses (IPv4 and IPv6), AS numbers
 - Critical infrastructure services, Policy coordination, Education and Training, International liaison

Private-sector, industry self-regulatory body

- Established in 1993, in the "Internet Tradition"...
- Consensus-based, open and transparent
- Non-profit, neutral and independent
- Product of global trend to deregulation
 - But equally open and accessible to all interested parties

Regional Internet Registries

📎 APNIC

Internet for Everything?

- No longer just "Internet for Everyone"
- "Peer to peer" between any pair of devices, not just people on computers
 - appliances, automobiles, buildings, cameras, control units, embedded systems, home networks, medical devices, mobile devices, monitors, output devices, phones, robots, sensors, switches, VPNs
- No more NAT ("fog on the Internet")
- Eventually, every device will be connected to the Internet

- and every device will need an address

APNIC

How many addresses?

IPv4: 32 bits

- IPv4 provides 2³² addresses
 - = 4,294,967,296 addresses
 - = 4 billion addresses

IPv6: 128 bits

- IPv6 provides 2¹²⁸ addresses?
 - = 340,282,366,920,938,463,463,374,607,431,770,000,000
 - = 340 billion billion billion addresses

📎 APNIC

IPv6 address architecture

= 281 thousand billion addresses

IPv6 utilisation

- Addresses utilised will be far fewer than addresses available
- Percentage utilised must reduce address space grows
 - Because of hierarchical addressing architecture
- HD-Ratio (Host Density Ratio) defines utilisation in hierarchical address space

 $HD = \frac{\log(\textit{utilised})}{\log(\textit{total})}$

• Value of 0.8 regarded as reasonable

 "values of 80% or less corresponds to comfortable trade-offs between pain and efficiency" (RFC3194, 2001)

🖉 APNIC

IPv6 utilisation (HD = 0.80)

RFC3194 "The Host-Density Ratio for Address Assignment Efficiency"

How many addresses?

Total site addresses, and addresses/person – 2050: Projected earth population = 10 billion

Address size (bits)	Total addresses available	Addresses per person (2050)
128	340 billion ⁴	34 billion ³
64	18 billion ²	1.8 billion
48	281 thousand billion	28 thousand
48 (HD = 0.80)	362 billion	36

- IPv6 will provide 0.0013 x 248 site addresses!
 - = 362,703,572,709
 - = 362 billion

APNIC

What is a "site" ?

Much much larger than a "Class B" in IPv4 terms

/48

/127

Asia Pacific Network Information Centre

What is a "site" ?

- RFC3177: Any location requiring subnets, with independent Internet connectivity
- Many possible examples
 - Office, home, or apartment network
 - Intelligent building
 - Car with multiple onboard systems
 - Mobile phone with accessory networks
 - Any mobile device with multiple connected networks
 - Robots, complex embedded systems
 - Other sophisticated devices...
- A person could have many of these
- A company could have many more

Future address management

- Current IPv6 allocation and assignment policies are simple and easy
 - Consciously support fast IPv6 deployment
 - However, wasteful in the long-term
- We will eventually need to be more careful with address management
- For example:
 - Reduce minimum size of end-site assignment
 - Tighten criteria for portable (ISP) allocation
 - Reduce size of initial portable allocation
 - Adjust HD-Ratio utilisation requirement

After IPv6 - the next transition?

- Transition from IPv4 to IPv6 is very hard
 - Will take many years
 - Many details to be determined
 - Some still say it will never happen !

• What about the next transition?

- When the Internet is thousands or millions of times larger than today's internet
- What magic will be needed?
- Conclusion
 - IPv6 addresses are easy to get, at the moment
 - But we must make IPv6 last a long time, possibly "forever"
 - Addresses will probably be harder to get, in future

Thank You

Paul Wilson

dg@apnic.net