APNIC Ø

Tutorial - IPv6 Address Management

Paul Wilson Director General, APNIC pwilson@apnic.net

Tutorial Overview

- Introduction to IP Address Management
- Rationale for IPv6
- IPv6 Addressing
- IPv6 Policies & Procedures
- References

.

IP Address Management

2

3

Centre

The early years: 1981 – 1992

1981:

ĩana

"The assignment of numbers is also handled by Jon. If you are developing a protocol or application that will require the use of a link, socket, port, protocol, or network number **please contact Jon to receive a number assignment**." (RFC 790)

APNIC

Global Routing Table: '88 - '92

Global Routing Table: '88 - '92

"It has become clear that ... these problems are likely to become critical within the next one to three years." (RFC1366)

"...it is [now] desirable to consider delegating the registration function to an organization in each of those geographic areas." (RFC 1338)

Global routing table

http://bgp.potaroo.net/as1221/bgp-active.html

Recent years: 2002 – 2005

1

IPv4 Distribution – Global

Regional Internet Registries

What are RIRs?

- Regional Internet Registries
- Service organisations
 - Industry self-regulatory structures
 - Non-profit, neutral and independent
 - Open membership-based bodies
 - Representative of ISPs globally
- First established in early 1990's
 - Voluntarily by consensus of community
 - To satisfy emerging technical/admin needs
- In the "Internet Tradition"
 - Consensus-based, open and transparent

What do RIRs do?

Internet resource allocation

- Primarily, IP addresses IPv4 and IPv6
- Receive resources from IANA/ICANN, and redistribute to ISPs on a regional basis
- Registration services ("whois")
- Policy development and coordination
 - Open Policy Meetings and processes
- Training and outreach
 - Training courses, seminars, conferences...
 - Liaison: IETF, ITU, APT, PITA, APEC...
- Publications
 - Newsletters, reports, web site...

How do RIRs do it?

- Open and transparent processes
 - Decision-making
 - Policy development
- Open participation
 - Democratic, bottom-up processes
- Membership structure
 - 100% self-funded through membership fees
 - National Internet Registries (APNIC)
- Community support (APNIC)
 - Training
 - R&D fund
 - Fellowships funding received and given
 - Open source software contribution (GPL)

Rationale for IPv6

IPv4 Lifetime

http://bgp.potaroo.net/ipv4

Rationale for IPv6

- IPv4 address space consumption
 - -Now ~10 years free space remaining
 - Up to 17 if unused addresses reclaimed
 - These are today's projections reality will be different
- Loss of "end to end" connectivity
 - Widespread use of NAT due to ISP policies and marketing
 - Additional complexity and performance degradation

*AKA home router, ICS, firewall

NAT implications

- Breaks end-to-end network model
 - Some applications cannot work through NATs
 - Breaks end-end security (IPsec)
- Requires application-level gateway (ALG)
 - When new application is not NAT-aware, ALG device must be upgraded
 - ALGs are slow and do not scale
- Merging of separate private networks is difficult.
 - Due to address clashes
- See RFC2993
 - Architectural Implications of NAT

Features of IPv6

26

APNIC

IPv6 feature summary

- Increased size of address space
- Header simplification
- Autoconfiguration
 - Stateless (RFC 2462) or stateful (DHCPv6)
 - Facilitates renumbering
- QoS
 - Integrated services (int-serv), Differentiated services (diffserv and RFC2998)
 - RFC 3697
- IPSec
 - As for IPv4
- Transition techniques
 - Dual stack
 - Tunnelling

IPv6 addressing model

- Unicast

 Single interface
- Anycast
 Any one of several

• See RFC 3513

- Replaces IPv4 "broadcast"

C

28

IPv4 vs IPv6

IPv4: 32 bits

- 2³² addresses
 - = 4,294,967,296 addresses
 - = 4 billion addresses

IPv6: 128 bits

2¹²⁸ addresses?

- = 340,282,366,920,938,463,463,374,607,431,770,000,000
- = 340 billion billion billion addresses?

• No, due to IPv6 address structure...

IPv6 header

• IPv6 header is simpler than IPv4

- IPv4: 14 fields, variable length (20 bytes +)
- IPv6: 8 fields, fixed length (40 bytes)

Header fields eliminated in IPv6

- Header Length
- Identification
- Flag
- Fragmentation Offset
- Checksum
- Header fields enhanced in IPv6
 - Traffic Class
 - Flow Label

IPv6 transition

- Dual stack hosts
 - Two TCP/IP stacks co-exists on one host
 - Supporting IPv4 and IPv6
 - Client uses whichever protocol it wishes

IPv6 transition

• IPv6 tunnel over IPv4

R

IPv6 Addressing

APNIC

33

How much IPv6?

• 2⁶⁴ "subnet" addresses

- = 18,446,744,073,709,551,616
- = 18 billion billion subnet addresses

2⁴⁸ site addresses

- = 281,474,976,710,656
- = 281 thousand billion site addresses

34

IPv6 address format

2001:0DA8:E800:0000:0260:3EFF:FE47:0001

- 8 groups of 4 hexadecimal digits
 - Each group represents 16 bits
 - Separator is ":"
 - Case-independent

IPv6 Address Structure

37

IPv6 address structure

- Current ISP allocation (min) is /32
 - Providing 2¹⁶ = 65,536 customer site addresses
 - ISP allocation can be larger and can increase
- Each site address is /48
 - Providing 2¹⁶ = 65,536 subnet addresses

IPv6 – ISP addressing

Every ISP receives a /32 (or more) Providing 65,536 site addresses (/48)

IPv6 – Site addressing

Every "site" receives a /48

 Providing 65,536 /64 (LAN) addresses

APNIC

IPv6 – LAN addressing

Every LAN segment receives a /64 Providing 2⁶⁴ interface addresses per LAN

IPv6 – Device addressing

• Every device interface receives a /128

May be EUI-64 (derived from interface MAC address), random number (RFC 3041), autoconfiguration, or manual configuration

IPv6 Policy

IPv6 policy – Overview

- Policy background
- Addressing structure
- IPv6 utilisation HD ratio
- Initial allocation criteria
- Subsequent allocation criteria
- Address assignment policies
- Other allocation conditions
- Other policies

IPv6 policy – History

- IPv6 policy is "Common Policy" of all RIRs
 - The same policy has been adopted by all
 - Regional adjustment is possible
- First policy published in 1999
 - "Provisional IPv6 Policy" adopted by all RIRs
- Policy revised in 2002
 - After extensive review by all RIRs
- Next policy review
 - Currently under discussion
- Public mailing lists and documentation
 - See http://www.apnic.net

IPv6 address space management

- RIR receives allocations from IANA – Currently in /23 units (/16 proposed)
- RIR makes allocation to "ISP" (or "LIR")
 - ISP must demonstrate need for addresses
 - Policies dictate how need can be demonstrated
 - First allocation minimum is /32
 - Subsequent allocations as needed, when current allocation is fully utilised
- ISP makes assignment to customers
 - Including downstream ISPs
- Provider-based addressing
 - ISP should aggregate address announcement
 - Customer addresses are not portable

IPv6 address structure

IPv6 utilisation – HD Ratio

 Under IPv4, address space utilisation measured as simple percentage:

 $Utilisation = \frac{assigned}{available}$

- IPv4 utilisation requirement is 80%
 - When 80% of address space has been assigned or allocated, LIR may receive more
 - E.g. ISP has assigned 55,000 addresses from

 $\frac{assigned}{available} = \frac{55,000}{65,536} = 84\%$

APNIC

/16

IPv6 utilisation – HD Ratio

 Under new IPv6 policy utilisation is determined by HD-Ratio (RFC 3194):

 $Utilisation_{HD} = \frac{\log(assigned)}{\log(available)}$

IPv6 utilisation requirement is HD=0.80

- Measured according to end-site assignments only (intermediate allocations are ignored)
- E.g. ISP has assigned 10,000 addresses from

 $\frac{\log(assigned)}{\log(available)} = \frac{\log(10,000)}{\log(65,536)} = 0.83$

IPv6 utilisation (HD = 0.80)

RFC3194 "The Host-Density Ratio for Address Assignment Efficiency"

APNIC

IPv6 utilisation (HD = 0.80)

Percentage utilisation calculation

IPv6 Prefix		Total site address in /48s	Threshold (HD ratio 0.8)	Utilisation %
/42	6	64	28	43.5 %
/36	12	4096	776	18.9 %
/35	13	8192	1351	16.5 %
/32	16	65536	7132	10.9 %
/29	19	524288	37641	7.3 %
/24	24	16777216	602249	3.6 %
/16	32	4294967296	50859008	1.2 %
/8	40	1099511627776	4294967296	0.4 %
/3	45	35184372088832	68719476736	0.4 %

IPv6 initial allocation criteria

Initial allocation size is /32

- Allocated to any IPv6 LIR (ISP) planning to connect 200 End Sites within 2 years
- Need not be connected to the Internet
- This is the default initial allocation to "new" ISPs ("slow start" policy)
- Larger initial allocations can be made if justified according to:
 - IPv6 network infrastructure plan
 - Existing IPv4 infrastructure and customer base

IPv6 allocation to existing network

• Existing ISP infrastructure (IPv4)

- Policy assumes that transition is inevitable
- Large IPv4 ISPs will receive IPv6 allocations consistent with the scale of existing networks

IPv6 allocation to existing network

- Allocation size calculated from existing IPv4 network infrastructure and customers:
 - -1 IPv6 /48 per customer
 - -1 IPv6 /48 per POP
- Total allocation according to HD-ratio utilisation requirement
 - Eg if 500,000 /48s are required then /24 can be allocated

IPv6 assignments

- Default assignment /48 for all "End Sites"
 - Providing /16 bits of space for subnets
 - Each end site can have 65,536 subnets
- "End Site" defined as an end user of an ISP where:
 - The ISP assigns address space to the end user
 - The ISP provides Internet transit service to the end user
 - The ISP advertises an aggregate prefix route that contains the end user's assignment
 - Multiple subnets are required
- Examples
 - Home, small office, large office, mobile devices?
 - ISP POPs are also defined as End Sites

IPv6 assignments

• Larger assignments: Multiple /48s - Some end sites will need more than one /48 - Requests to be reviewed at RIR level Smaller assignments: /64 - Single subnet devices should receive /64 only – e.g. simple mobile phone Smaller assignments: /128 - Devices with no subnets should receive /128 only – E.g. remote sensor • See RFC3177 (Sep 2001)

IPv6 assignments

- IPv6 assignments to End Sites are used to determine utilisation of IPv6 address blocks
 - According to HD-Ratio
 - Intermediate allocation hierarchy (ie downstream ISP) not considered
 - All assignments must be registered
 - Utilisation is determined from total number of registrations
- Intermediate allocation and assignment practices are the responsibility of the LIR
 Downstream ISPs must be carefully managed

IPv6 registration

• LIR is responsible for all registrations

Subsequent IPv6 allocation

 Subsequent allocation can be made when ISP's existing address space reaches required utilisation level

- i.e. HD >= 0.80

- Other address management policies must also be met
 - Correct registrations
 - Correct assignment practices etc (eg RFC 3177)
- Subsequent allocation size is at least double
 - Resulting IPv6 Prefix is at least 1 bit shorter
 - Or sufficient for at least 2 years requirement

C

APNIC

Other allocation conditions

- License model of allocation
 - Allocations are not considered permanent, but always subject to review and reclamation
 - Licenses renewed automatically while addresses in use, consistent with policies
- Existing /35 allocations
 - A number of /35s have been assigned under previous "provisional" IPv6 policy
 Holders of /35s are eligible to request /32

IPv6 IXP assignments

- Available to Internet Exchange Points as defined
 - Must demonstrate 'open peering policy'
 - -3 or more peers
- Portable assignment size: /48
 - Not to be announced
 - All other needs should be met through normal processes
 - Previous /64 holders can "upgrade" to /48

IPv6 critical infrastructure

- Available to facilities defined as "critical infrastructure"
 - Root servers
 - RIRs and NIRs
 - -ccTLD registries
- Assignment size: /32

IPv6 experimental allocation

- Available for experimental purposes
 - Public experiments only
 - Legitimate experiments documented by RFC, I-D or other formal process
 ADMC may each independent expert education
 - APNIC may seek independent expert advice

- Allocation size: /32
 - May be larger if required
 - Address space must be returned after 1 year

Centre Pacific Network Information Asia APNIC

IPv6 policy – Current issues

- Size of IANA allocation to RIRs
 - Currently under review
- Size of initial allocation
 - /32 for normal allocations
 - HD-ratio applied for allocation to existing IPv4 infrastructure
- HD-ratio
 - Is 0.8 the appropriate value?
- Assignments under RFC 3177
 - No experience yet
- All issues can be reviewed through APNIC open policy process

IPv6 Policy – Summary

- IPv6 address space is easily available
 Criteria may be hardened in future
- Policy is subject to review

 Policies evolve as experience is gained
 Any member of the community may propose changes, alternatives
- Public mailing lists and documentation – http://www.apnic.net/

References

APNIC 📎

66

APNIC References

APNIC website

– <u>http://www.apnic.net</u>

• APNIC IPv6 Resource Guide

- http://www.apnic.net/services/ipv6_guide.html

- Includes:
 - Policy documents
 - Request forms
 - -FAQs

Other References

• IPv6 Forum

- http://www.ipv6forum.org

• 6Bone

- <u>http://www.6bone.net</u>
- "The case for IPv6"
 - http://www.6bone.net/misc/case-for-ipv6.html

APNIC

Questions?

Paul Wilson Director General, APNIC pwilson@apnic.net