

IP Address Management

AfNOG Workshop, 11 May 2001 Accra, Ghana

presented by: Anne Lord, APNIC Mirjam Kühne, RIPE NCC

Anne Lord & Mirjam Kühne . AfNOG Workshop, 10 May 2001 . http://www.ripe.net

Definitions

Internet Registry (IR)

 organisation which allocates, assigns and registers Internet resources (IP addresses, ASNs)

Regional Internet Registry (RIR)

- organisation with regional responsibility for management of Internet resources
- address registration services, co-ordination and policy development
- Must be neutral and consensus-based
- APNIC, ARIN, RIPE-NCC AfriNIC, LACNIC in formation

Local Internet Registry (LIR)

• Usually an ISP, assigns address space to its customers

Address Distribution

- Developed in open policy forums
- Implemented by Regional Internet Registries
- Open, controlled by membership
- Co-ordinated among RIRs

Policy Development

- Policy (changes) can be suggested by
 - RIR Members/Local IRs
 - RIR staff
 - Public at large
- Policy must be
 - fair to all
 - 'good' for the Internet
 - consistent with global policies

Global Context

Registry System Goals

Conservation

- efficient use of resources
- allocation based on demonstrated need

Aggregation

- Limiting growth of routing table
- provider-based addressing policies
- Registration
 - Ensuring uniqueness
 - Troubleshooting

Fairness and Consistency

- In the interests of regional and global communities

RIR Model - Structure

- Bottom up industry self-regulatory structure
 - Open and transparent
 - Neutral and impartial

Not for profit membership organisation

- Membership open to all interested parties
- Membership elects Executive Board
- Membership approves activities & budget

Policies developed by industry at large

Through open policy processes

RIR Service Regions

Anne Lord & Mirjam Kühne . AfNOG Workshop, 10 May 2001 . http://www.ripe.net

RIR Activities

Public Services

Specific online services

- whois database

Co-ordination activities

- Liaison with development and industry communities
 - eg IETF, IEPG, IPv6 Directorate, GSM-A
- Public and targeted information dissemination
 - eg Governments

Beneficial for the Internet at large

RIR Activities

Member Services

- Registration Services
 - IPv4 address allocation and assignment
 - IPv6 address allocation and assignment
 - AS number assignment
 - Reverse domain name delegation
 - Training and Education

Note: RIRs do not register domain names

Becoming an LIR?

• When?

- you have customers who need addresses
- you need more than a /21 in 1 year
- Advantages
 - independent allocation from RIR
- Disadvantages
 - has overhead
 - costs resources
 - possible need to renumber

Alternative

addresses from upstream ISP

Responsibilities of an LIR

- Be familiar with latest IP policies
- Follow goals of Registry System
 - conservation
 - aggregation
 - registration
- Manage allocations responsibly
- Keep up to date records
 - internally
 - whois Database

How to become an LIR

- Complete application form
- Have trained contact persons
- Read relevant policy documents
- Sign service agreement
- Pay sign-up & annual service fee

Takes resources!

- Design and plan network
- Assess address needs
- Provide this information to ISP/LIR

Network Documentation

Design of the network

- how many physical segments will it consist of?
- what is each segment going to be used for?
- including equipment used
- how many hosts are in each segment?
- expectations of growth
- topology map

Utilisation and efficiency guidelines

- 25% immediately, 50% in one year
- operational needs; no reservations

- Can address space be conserved by using
 - different subnet sizes?
 - avoiding padding between subnets?
- Any address space already in use?

- returning and renumbering? (encouraged)

Class A: 128 networks x 16M hosts (50% of all address space)

Class C: 2M networks x 254 hosts (12.5%)

Anne Lord & Miriam Kühne	AfNOG Workshop, 10 May 2001	http://www.ripe.net	1
110			
	C (21 bits)	Host (8 bits)

Address Architecture - Classful

• By end of 1992, several challenges

– Internet address depletion

- "Generous" allocation policy
- Many addresses allocated but unused

– Growing routing table

- Every network advertised globally
- Routers overloaded
- Increasing instability of routing structure

CIDR: Classless Inter-Domain Routing

- Proposed as "supernetting" in 1992 (RFC1367)
- Finalised and deployed in 1993 (RFC1519)
- Higher utilisation through variable-length
 network address
- Higher routing efficiency through aggregation

Classless Addressing -Examples

CIDR Aggregation

.

AfNOG Workshop, 10 May 2001

.

Describing your Network

An Example of how to build an Addressing Plan

Best Current Practice

- Assignments based on requirements
- Classless assignments
- RFC1918, NAT
- HTTP 1.1
- Dynamic Dial-up
- IP unnumbered

Private Address Space

- RFC1918
 - 10/8
 - 172.16/12
 - 192.168/16

10.0.0.0 - 10.255.255.255 172.16.0.0 - 172.31.255.255 192.168.0.0 - 192.168.255.255

- Motivation
 - saves public address space
 - allows for more flexibility
- Suitable when
 - hosts do not require access to other networks
 - hosts need limited access to outside services
 - can use application layer G / W (fire walls, NAT)

Web Hosting

Name based hosting

 single IP address assigned to physical server that hosts several virtual hosts

IP based hosting

 single unique IP address assigned to each virtual host

Name Based Hosting

- Conserves Address Space
- Requires
 - support of "Host:" header in HTTP requests
 - HTTP1.1 compliant browsers

Technical Exceptions

- SSL certificates
 - work ongoing at IETF to support name based hosting
- Virtual ftp domains with anonymous login

Dial up

Static dial-up strongly discouraged

Wastes address space

Dynamic dial-up recommended

- assigning addresses to a pool
- serves more users

IP Unnumbered

• R1 and R2 form a "virtual router"

The serial link has no ip address

- All packets arriving at S0 of either router immediately go to its E0
- All packets generated at E0 go onto serial link
- Conserves addresses but makes management harder

.

AfNOG Workshop, 10 May 2001

.