

Prop132 deployment report

A policy implementation report for Prop132 "AS0 for unallocated and unassigned resources"

George Michaelson

Product Manager: Registry

ggm@apnic.net

Virtual Policy Sig update!

Prop132 deployment report

A policy implementation report for Prop132 "AS0 for unallocated and unassigned resources"

George Michaelson

Product Manager: Registry

ggm@apnic.net

Prop132 "AS0 for unallocated and unassigned resources"

- We have implemented Prop132
 - APNIC now publishes and maintains an AS0 "ROA" for all un-delegated resources in our registry
 - These are the IPv4 and IPv6 resources listed as "available" or "reserved" in our daily published delegated statistics files
 - The AS0 ROA is defined in RFC6483 as "a disavowal of routing origination"

A ROA with a subject of AS 0 (AS 0 ROA) is an attestation by the holder of a prefix that the prefix described in the ROA, and any more specific prefix, should not be used in a routing context.

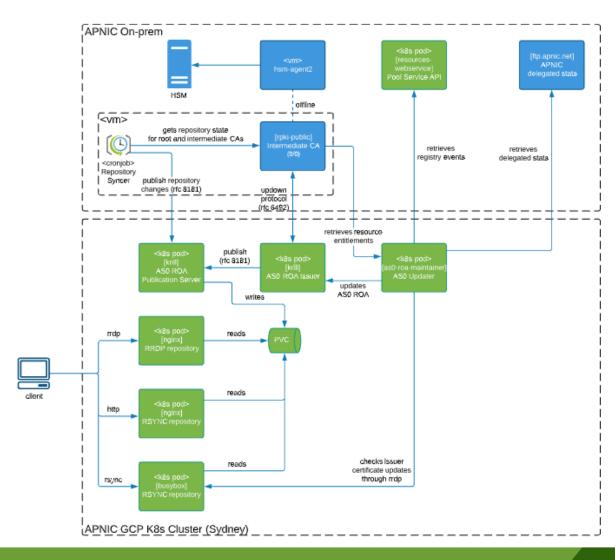
Deployment status

- This is now a fully deployed service
 - With systems monitoring 24/7 integrated into our operations platforms
 - Deployed in the cloud for the publication point (data repository)
 - At this stage, deployed in a stand-alone Trust Anchor Locator (TAL)

Grafana Status checks

Implementation report:testbed

- An initial Testbed was deployed for APRICOT/APNIC49
 - Based on the "Krill" system from NLNet Labs
 - Operating on the delegated files as a daily view of registry
 - Using a temporary, soft-keyed Trust Anchor (TA) in a TAL file
 - Publishing the repository inside APNIC VM on the test network
 - This service was used by a small number of people (<10)
 - We were able to confirm issues with discrete ROA per prefix
 - We understood our operational needs to manage the ROA as resources are issued by APNIC


How we took testbed to production

- We have now deployed this service into production
 - Still based on delegated files, but with a delay to prevent accidental exclusions if delegated files are out of synchronization with registry
 - Live updates to Registry (delegations) are applied within 5 minutes to both main RPKI and AS0 RPKI state
 - Delegations are removed from the AS0 ROA within 5 minutes of resources being assigned or allocated from the free pool.
 - We are collecting statistics on use, and the scale of BGP effects which will be presented to the Routing Security SIG

Implementation report: Production

- In-house deployment on VM under operations monitoring
 - HSM backed trust anchor keypair
 - Same level of assurance as main line TA
- Cloud deployment of repository (GCP/GKE)
 - Both rsync and RRDP supported
 - Will distribute in GCP
 - When 2nd and further nodes commissioned
 - When the main RPKI RRDP/rsync service is distributed

Implementation architecture

- On-premises and GKE Sydney deployments
- HSM backed TAL, follows main line RPKI
- Re-use of existing RPKI systems code
 - Actual signing carried out by Krill (NLNet)
- Repository structure served from GKE
 - Capable of being distributed in future
 - Using CloudFlare front-end

Where to from here?

- Further discussion of this service is now conducted in the APNIC Routing Security SIG
 - Statistics on use,
 - Size of ROA,
 - Operational experiences,
 - Future directions.
- Initial outcome: 69 routes marked bad in DFZ from ~65k prefixes
 - (reported by Job Snijders during deployment testing)

Some initial statistics

- Initial outcome: 69 routes marked bad in DFZ from ~65k prefixes
 - (reported by Job Snijders during deployment testing)
- Usage: Released week of 1st September
 - 35 ASN now fetching from the service (as of end October)

ASN fetching the AS0 TAL (september)

ASN	Name	Economy
9443	VOCUS-RETAIL-AU Vocus Retail	AU
38345	ZDNS Internet Domain Name System Beijing	CN
4837	CHINA169-BACKBONE CHINA UNICOM	CN
4812	CHINANET-SH-AP China Telecom (Group)	CN
	CNIX-AP China Networks Inter-Exchange	CN
	CNCGROUP-SH China Unicom Shanghai network	CN
	CNGI-CERNET2-AS-AP China Next Generation Internet	CN
	CHINANET-BACKBONE No.31	CN
	KPN KPN National	EU

ASN	Name	Economy
3265	XS4ALL-NL Amsterdam	NL
8587	INFRACOM-AS	NL
15169	GOOGLE	US
20473	AS-CHOOPA	US
395747	CLOUDFLARENET-SFO05	US
8075	MICROSOFT-CORP-MSN-AS-BLOCK	US
14618	AMAZON-AES	US
14061	DIGITALOCEAN-ASN	US
132892	CLOUDFLARE Cloudflare	US

ASN fetching the AS0 TAL (October)

ASN	AS Name	сс
38195	SUPERLOOP-AS-AP	AU
4764	Aussie Broadband	AU
7545	TPG Telecom Limited	AU
51852	PLI-AS	СН
17621	China Unicom Shanghai network	CN
38345	ZDNS	CN
4134	CHINANET-BACKBONE	CN
4837	CHINA UNICOM Backbone	CN
4847	China Networks Inter-Exchange	CN
1136	KPN National	EU
12876	SAS	FR
16276	OVH	FR

ASN	AS Name	сс
9009	M247	GB
206238	FREEDOMINTERNET	NL
3265	XS4ALL-NL	NL
8587	INFRACOM-AS	NL
34665	PINDC-AS	RU
132892	Cloudflare	US
63949	Linode	US
13649	ASN-VINS	US
14061	DIGITALOCEAN-ASN	US
14618	AMAZON-AES	US
15169	GOOGLE	US
16509	AMAZON-02	US

ASN	AS Name	сс
16628	DEDICATED-FIBER-COMMUNICATIONS	US
174	COGENT-174	US
20473	AS-CHOOPA	US
209	CENTURYLINK-US-LEGACY-QWEST	US
36351	SOFTLAYER	US
394474	WHITELABELCOLO393	US
53667	PONYNET	US
54538	PAN0001	US
62874	WEB2OBJECTS	US
8075	MICROSOFT-CORP-MSN-AS-BLOCK	US

Some initial statistics: Size of ROA

- AS0 ROA is ~1mb (at present)
- 64k++ IPv4 and IPv6 prefixes encoded in one Object
 - Approx 1k IPv4
 - 64k IPv6
 - The IPv6 count is a function of "sparse" allocation
 - Size varies with allocation/assignment and returns

Recommendations on use

- We do not recommend integration in the BGP ROV process directly
 - We ask Relying Party (Validator) code developers not to integrate it into the code, it should be hand configured.
- We do recommend use of the AS0 TAL as a check against BGP state, but not directly integrated into BGP
 - Look at AS0 TAL rejected routes, understand why.

What should I do (ISP or IXP operator)?

- You don't need to do anything.
 - this is an advisory/information service only.
- If you want to understand leakage of AS0 tagged 'unused' resources
 - run a validator which includes the TAL for ASO
 - look at what kinds of BGP announcements would be filtered,
 - especially ones which originate in your downstreams, or within the IX community

Questions?