IPv6 Address Planning

Philip Smith
APNIC 34
21st – 31st August 2012
Address Planning

- IPv6 address space available to each network operator is very large compared with IPv4
 - Design a scalable plan
 - Be aware of industry current practices
 - Separation of infrastructure and customer addressing
 - Distribution of address space according to function
Why Create an Addressing Plan?

- The options for an IPv4 addressing plan were severely limited:
 - Because of scarcity of addresses
 - Every address block has to be used efficiently

- IPv6 allows for a scalable addressing plan:
 - Security policies are easier to implement
 - Addresses are easier to trace
 - Enables more efficient network management
Nibble Boundaries

- IPv6 offers network operators more flexibility with addressing plans
 - Network addressing can now be done on nibble boundaries
 - For ease of operation
 - Rather than making maximum use of a very scarce resource
 - With the resulting operational complexity

- A nibble boundary means subdividing address space based on the address numbering
 - Each number in IPv6 represents 4 bits
 - Which means that IPv6 addressing can be done on 4-bit boundaries
Consider the address block 2001:db8:0:10::/61
- The range of addresses in this block are:

```
2001:0db8:0000:0010:0000:0000:0000:0000
to
2001:0db8:0000:0017:ffff:ffff:ffff:ffff
```
- Note that this subnet only runs from 0010 to 0017.
- The adjacent block is 2001:db8:0:18::/61

```
2001:0db8:0000:0018:0000:0000:0000:0000
to
2001:0db8:0000:001f:ffff:ffff:ffff:ffff
```
- The address blocks don’t use the entire nibble range
Now consider the address block 2001:db8:0:10::/60

- The range of addresses in this block are:

- Note that this subnet uses the entire nibble range, 0 to f
- Which makes the numbering plan for IPv6 simpler

 This range can have a particular meaning within the ISP block (for example, infrastructure addressing for a particular PoP)
Addressing Plans – Infrastructure

- Network Operators should procure a /32 from their RIR
- Address block for infrastructure
 - /48 allows 65k subnets in the backbone
- Address block for router loop-back interfaces
 - Number all loopbacks out of one infrastructure /64
 - /128 per loopback
- Point-to-point links
 - /64 reserved for each, address as a /127
- LANs
 - /64 for each LAN
Addressing Plans – Customer

- Customers get one /48
 - Unless they have more than 65k subnets in which case they get a second /48 (and so on)

- However, typical industry customer assignments today:
 - /64 for just one LAN
 - /60 for a small network – 16 subnets
 - /56 for a medium network – 256 subnets
 - /48 for a large network – 65536 subnets

- This is still a very active discussion area
Deployable Address Plan

- Documentation
 - IPv4 addresses are probably short enough to memorise
 - IPv6 addresses are unlikely to be memorable at all

- Document the address plan
 - What is used for infrastructure
 - What goes to customers
 - Flat file, spreadsheet, database, etc
 - But documentation is vital
 - Especially when coming to populating the DNS later on
Addressing Tools

- Examples of IP address planning tools:
 - NetDot: netdot.uoregon.edu (recommended!!)
 - HaCi: sourceforge.net/projects/haci
 - IPAT: nethead.de/index.php/ipat
 - freeipdb: home.globalcrossing.net/~freeipdb/

- Examples of IPv6 subnet calculators:
 - ipv6gen: code.google.com/p/ipv6gen/
 - sipcalc: www.routemeister.net/projects/sipcalc/
Deployable Address Plan

- Pick the first /48 for our infrastructure
 - Reason: keeps the numbers short
 - Short numbers: less chance of transcription errors
 - Compare:
 2001:db8:ef01:d35c::1/128
 with
 2001:db8::1/128
 For Loopback interface addresses

- Out of this /48, pick the first /64 for loopbacks
 - Reason: keeps the numbers short
Deployable Address Plan

- Pick the second /48 for point-to-point links to customers
 - Addresses not a trusted part of Operator’s infrastructure
- Divide the /48 between PoPs
 - e.g. 10 PoPs -> split into /52s -> 4096 links per /52
 - Gives 65536 /64s for 65536 customer links
 - /64 per link, number as /127 as previously
 - Adjust number of /48s to suit PoP size (one /48 per PoP?)
- Alternative is to use unnumbered interfaces
Deployable Address Plan

- For the infrastructure /48:
 - First /64 for loopbacks
 - Maybe reserve the final /60 for the NOC
 - Gives 16 possible subnets for the Network Operations Centre (part of the Infrastructure)
 - Remaining 65519 /64s used for internal point-to-point links
 - More than any network needs today
Example: Loopback addresses

- 2001:db8:0::/48 is used for infrastructure
- Out of this, 2001:db8:0:0::/64 is used for loopbacks
- Network Operator has 20 PoPs
 - Scheme adopted is 2001:db8::XXYY/128
 - Where X is the PoP number (1 through FF)
 - Where Y is the router number (1 through FF)
 - Scheme is good for 255 PoPs with 255 routers per PoP, and keeps addresses small/short
Example: Loopback addresses

- Loopbacks in PoP 1:
 - CR1 2001:db8::101/128
 - CR2 2001:db8::102/128
 - BR1 2001:db8::103/128
 - BR2 2001:db8::104/128
 - AR1 2001:db8::110/128
 - AR2 2001:db8::111/128
 - AR3 2001:db8::112/128
 - AR4 2001:db8::113/128
 - ...etc...

- Loopbacks in PoP 10:
 - CR1 2001:db8::a01/128
 - CR2 2001:db8::a02/128
 - BR1 2001:db8::a03/128
 - BR2 2001:db8::a04/128
 - AR1 2001:db8::a10/128
 - AR2 2001:db8::a11/128
 - AR3 2001:db8::a12/128
 - AR4 2001:db8::a13/128
 - ...etc...
Example: Backbone Point-to-Point links

- ISP has 20 PoPs
 - Scheme adopted is 2001:db8:0:XXYY::Z/64
 - Where:
 - XX is the PoP number (01 through FF)
 - YY is the LAN number (when YY is 00 through 0F)
 - YY is the P2P link number (when YY is 10 through FF)
 - Z is the interface address (2 or 3)
 - /64 is reserved, but the link is numbered as a /127
 - Scheme is good for 16 LANs and 240 backbone PtP links per PoP, and for 255 PoPs
Example: Backbone Point-to-Point links

<table>
<thead>
<tr>
<th>LAN1</th>
<th>2001:db8:0:100::/64</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN2</td>
<td>2001:db8:0:101::/64</td>
</tr>
<tr>
<td>LAN3</td>
<td>2001:db8:0:102::/64</td>
</tr>
<tr>
<td>PtP1</td>
<td>2001:db8:0:110::/64</td>
</tr>
<tr>
<td>PtP2</td>
<td>2001:db8:0:111::/64</td>
</tr>
<tr>
<td>PtP3</td>
<td>2001:db8:0:112::/64</td>
</tr>
<tr>
<td>PtP4</td>
<td>2001:db8:0:113::/64</td>
</tr>
<tr>
<td>PtP5</td>
<td>2001:db8:0:114::/64</td>
</tr>
<tr>
<td>...etc...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAN1</th>
<th>2001:db8:0:e00::/64</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN2</td>
<td>2001:db8:0:e01::/64</td>
</tr>
<tr>
<td>LAN3</td>
<td>2001:db8:0:e02::/64</td>
</tr>
<tr>
<td>PtP1</td>
<td>2001:db8:0:e10::/64</td>
</tr>
<tr>
<td>PtP2</td>
<td>2001:db8:0:e11::/64</td>
</tr>
<tr>
<td>PtP3</td>
<td>2001:db8:0:e12::/64</td>
</tr>
<tr>
<td>...etc...</td>
<td></td>
</tr>
</tbody>
</table>
Links to Customers (1)

- Some Network Operators use unnumbered IPv4 interface links
 - So replicate this in IPv6 by using unnumbered IPv6 interface links
 - This will not require one /48 to be taken from the ISP’s /32 allocation
Links to Customers (2)

- Other Network Operators use global unicast addresses
 - So set aside the second /48 for this purpose
 - And divide the /48 amongst the PoPs
 - Or set aside a single/48 per PoP (depending on network size)
 - Each /48 gives 65536 possible customer links, assuming a /64 for each link

- Scheme used:
 - 2001:db8:00XX::/48 where XX is the PoP number
 - Good for 255 PoPs with 65536 point-to-point links each
Example

- Customer PtP links
 - PoP1
 - Reserved: 2001:db8:1:0::/64
 - Customer1: 2001:db8:1:1::/64
 - Customer2: 2001:db8:1:2::/64
 - Customer3: 2001:db8:1:3::/64
 - Customer4: 2001:db8:1:4::/64
 - PoP12
 - Reserved: 2001:db8:c:0::/64
 - Customer1: 2001:db8:c:1::/64
 - Customer2: 2001:db8:c:2::/64
 - Customer3: 2001:db8:c:3::/64
 - ...etc...
Example: Customer Allocations

- Master allocation documentation would look like this:
 - 2001:db8:0::/48 Infrastructure
 - 2001:db8:1::/48 PtP links to customers (PoP1)
 - 2001:db8:2::/48 PtP links to customers (PoP2)
 - 2001:db8:3::/48 PtP links to customers (PoP3)
 ...
 - 2001:db8:100::/48 Customer 1 assignment
 ...
 - 2001:db8:ffff::/48 Customer 65280 assignment

- Infrastructure and Customer PtP links would be documented separately as earlier
Summary

- First /48 for infrastructure
 - Out of that, first /64 for Loopbacks

- Defined structure within IPv6 addressing is recommended
 - Greater flexibility than with IPv4
 - Possible to come up with a simple memorable scheme

- Documentation vitally important!