Growing the Internet in Myanmar

2nd Into Myanmar IT & Telecoms Summit 3rd – 4th October 2013

Wit Hmone Latt withmone@apnic.net

APNIC

Agenda

- Who is APNIC?
- Future addressing
- Transit, Peering & IXPs
- Network Operations Groups
- APNIC's support for Internet development

APNIC's Mission

- Function as the RIR for the Asia Pacific, in the service of the community of Members and others
- Provide Internet registry services to the highest possible standards of trust, neutrality, and accuracy
- Provide **information**, **training**, **and supporting services** to assist the community in building and managing the Internet
- Support **critical Internet infrastructure** to assist in creating and maintaining a robust Internet environment
- Provide leadership and advocacy in support of its vision and the community
- Facilitate regional Internet development as needed throughout the APNIC community

Internet resources status

- IPv4 addresses:
 - APNIC operating "final /8" policy
 - Each member may receive a maximum of one /22 (a total of 1024 addresses)
- IPv6 addresses:
 - "unlimited"
 - Each member may receive a minimum of one /32 (allowing 4 billion discrete subnets)
- Autonomous System numbers:
 - Required for multihomed networks
 - "unlimited"
 - ASN range is 32 bits (allowing 4 billion ASNs)

Existing network infrastructure

- Only /22 of IPv4 space is available from APNIC
- IPv4 Transfers:
 - Some operators exploring IPv4 address transfers from
 - Other APNIC members
 - Outside the Asia Pacific region
 - Costs involved
- IPv6 address space is readily available
 - Many operators now adding IPv6 to their network infrastructure
 - Dual stack is common
 - Translation and other technologies also used

New network infrastructure

- The IPv4 /22 available from APNIC:
 - Only real use now is to provide window into IPv4 world
- New deployment realistically has to use native IPv6
- Two options for IPv6 native:
 - IPv6 native, private address IPv4, with IPv4 NAT
 - IPv6 native, no IPv4, with IPv6 to IPv4 NAT
 - Both techniques used in existing deployments by various operators around the world
- IPv4 NAT has limitations:
 - Scalability, security, performance, offering of services
 - Number of users per IP address

Peering & Transit

- The Internet is a success because network operators **peer** with each other
 - No cost for traffic
 - Takes place between network operators
 - Takes place between competitors
 - Peering guarantees a vibrant growing Internet economy
- Private peering
 - Operators interconnect their networks bilaterally
- Public peering
 - Operators participate at an Internet Exchange Point
- Transit
 - Last resort to reach destinations not available by peering

Peering & Transit

- Operators work hard to peer as much as they can
 - Reduces the cost of carrying local traffic over expensive international or transit links
- Operators ensure their transit links are efficient and effective
 - Choosing a transit provider is not just about price
 - But about working with an operator who can provide connectivity and service
- Two transit providers, maximum three only
 - Too many transit providers increases costs of bandwidth
 - Makes traffic engineering harder
 - Reduces manageability of network infrastructure

Internet Exchange Point

- When more than two providers need to peer with each other
 - More cost-effective and efficient to peer in one place
 - Neutral, open access called IXP
- All Internet economies need an IXP
 - Saving money
 - Improving Quality of Service (latency, jitter, bandwidth)
 - Creating a local Internet economy
- Implementing an IXP needs to:
 - Be **independent** of any network operator
 - Be free to access for any network operator (not just local)
 - Have no traffic charges

Internet Exchange Point

- Management and operation:
 - By consortium of members or independent party
- Technology:
 - Managed ethernet switch
- Physical:
 - Neutral independent data centre, with room to grow, with good connectivity and access
- Costs:
 - Shared equally amongst all members
 - Covers switch, datacentre, power, environment, operations

Network Operations Community

- A network operations group (NOG) is a forum for ISP technical and operations staff to meet, share ideas, discuss common issues, etc
- Even though network operators compete, technical staff stay in close contact, to handle issues of common interest
- There are many regional and local NOGs
 - SANOG South Asia
 - NANOG North America
 - MyNOG Malaysia
 - NZNOG New Zealand
 - JANOG Japan
 - Etc...

APNIC's role

- APNIC assists with developing Internet infrastructure around our service region, via:
 - Education (workshops, e-learning, tutorials)
 - IPv6 outreach (trends, best practices, deployment advice)
 - Engineering Assistance (more detailed work following workshops)
 - DNS Root Nameserver (F-root and I-root deployments at IXPs)
 - IXP infrastructure (encouraging the development of local economy)
 - Network Operations Groups & APNIC Regional Meetings (encouraging more local interaction, support and understanding)
- APNIC partners with organisations such as:
 - NSRC (Network Startup Resource Centre)
 - Local and Regional NOGs

APNIC Training update

- Continuing focus on IPv6 deployment
 - Comprehensive face-to-face and eLearning sessions
 - IPv6 eLearning day (first Wednesday of every month)
- eLearning
 - Every Wednesday in three time zones
 - 23 modules (1-hour duration per module)
 - Free for anyone and everyone who is interested
- Face-to-Face
 - Extensive hand-on exercises
 - Physical and Virtual Training Labs to enable participants to build and configure networks
- Engineering Assistance offered on a cost-recovery basis

training.apnic.net

Training delivered in 2013 (Jan to Aug)

- Face-to-face
 training
 - 40 courses in 20 locations
 - 1101 participants
- eLearning

APNIC

- 66 courses
- 498 participants

As at 31 August 2013

15

Summary

- Myanmar has an opportunity to overtake existing Internet economies
 - Little legacy infrastructure or services to support
 - Learn from 20+ years of experiences from other economies
- Internet connectivity is going mobile
 - IPv4 is now legacy protocol for new networks
 - New networks build IPv6 with minimal support to access legacy
- Interconnecting competing networks drives development and a local Internet economy
 - IXP and peering
 - Network Operations Group for a sharing technical community

Thank you!

APNIC

