Internet Evolution and IPv6

Paul Wilson
APNIC
Where are IPv6 addresses today?
IPv6 – Global allocations by RIR

- RIPE NCC: 737 (45%)
- AFRINIC: 37 (2%)
- LACNIC: 87 (5%)
- ARIN: 438 (27%)
- APNIC: 337 (21%)

Unit: IPv6 pref k
IPv6 – Global allocations by CC
IPv6 – Global allocations by CC

<table>
<thead>
<tr>
<th>Country</th>
<th>Allocations</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>8206</td>
<td>15%</td>
</tr>
<tr>
<td>JP</td>
<td>7275</td>
<td>13%</td>
</tr>
<tr>
<td>DE</td>
<td>9580</td>
<td>17%</td>
</tr>
<tr>
<td>FR</td>
<td>8233</td>
<td>15%</td>
</tr>
<tr>
<td>KR</td>
<td>5191</td>
<td>9%</td>
</tr>
<tr>
<td>EU</td>
<td>6157</td>
<td>11%</td>
</tr>
<tr>
<td>IT</td>
<td>4131</td>
<td>7%</td>
</tr>
<tr>
<td>PL</td>
<td>2088</td>
<td>4%</td>
</tr>
<tr>
<td>TW</td>
<td>2309</td>
<td>4%</td>
</tr>
<tr>
<td>Other</td>
<td>2936</td>
<td>5%</td>
</tr>
</tbody>
</table>

Unit: 32 prefix
IPv6 – Global allocation growth
Where is IPv6 being used today?
IPv6 – routed prefixes
IPv4 – routed prefixes

http://bgp.potaroo.net/as2.0/bgp-active.html
IPv6 – routed ASNs
IPv4 – routed ASNs

http://bgp.potaroo.net/as1221/bgp-active.html
Those graphs again...
The InterNAT today
The InterNAT Today

• Everything now engineered for NAT
 – Client-initiated transactions
 – Application-layer identities
 – Server agents for multi-party rendezvous
 – Multi-party shared NAT state

• Who bears the cost?
 – End users buy the NATs
 – Applications developers do the hard work
 – ISP costs are externalised

• Seems to work!
Where is the ISP Industry?

- **Telco consolidation**…
 - Intense competition in the ISP industry has finished
 - The focus has shifted away from the ISP and away carriage services and towards to content services

- **Commoditization**…
 - Mass market access deployment has marginal rates of return on capital
 - ISP products remain undifferentiated – triple play, NGN and IMS based products have so far failed to achieve visible takeup

- **Stasis**…
 - Low margins and poor capital return have created a sluggish industry that is unresponsive to change
 - Resistive to efforts to evolve the IP level service model
So what’s the problem?
The problem is reality

• Technical
 – IPv6 is stable and well tested
 – But many technical issues are still being debated…
 • “The perfect is the enemy of the good”
 – Industry needs confidence and certainty

• Business
 – NAT has worked too well
 – Existing industry based on externalizing the costs for address scarcity, and insecurity
 – Lack of investor interest in more infrastructure investment
 • Short term interests vs long term imperatives
 – IPv6 promotion - too much too early?
 • IPv6 may be seen as “tired” and not “wired”
The result…

- Short term business pressures support the case for further deferral of IPv6 infrastructure investment
- There is insufficient linkage between the added cost, complexity and fragility of NAT-based applications and the costs of infrastructure deployment of IPv6
- An evolutionary adoption seems unlikely in today’s environment
 - …or in the foreseeable future
The IPv4 revolution

• The 1990’s – a new world of...
 – Cheaper switching technologies
 – Cheaper bandwidth
 – Lower operational costs
 – The PC revolution, funded by users

• The Internet boom
 – The dumb (and cheap) network
 – Technical and business innovation at the ends
 – Many rewards for new services and innovation
An IPv6 revolution…

• The 2000’s – a new world of…
 – Commodity Internet provision, lean and mean
 – Massive reduction in cost of consumer electronics
 – A network-ready society

• The IPv6 boom?
 – “Internet for Everything”
 – Serving the communications requirements of a device-dense world
 – Device population some 2–3 orders of magnitude larger than today’s Internet
 – Service costs must be cheaper by 2-3 orders of magnitude – per packet
IPv6 – From PC to iPOD to iPOT

• A world of billions of chattering devices

• Or even trillions…
In conclusion…
The IPv6 Challenge

• There are still too few compelling feature or revenue levers in IPv6 to drive new investments in existing service platforms
• But the silicon industry has made the shift from value to volume years ago
• The Internet industry might follow this lead
 – From value to volume in IP(v6) packets
 – Reducing packet transmission costs by orders of magnitude
 – To an IPv6 Internet embracing a world of trillions of devices
 – To a true utility model of service provision
Thank you

pwilson@apnic.net